

INGREDIENTES VEGETAIS COM ADEQUADO POTENCIAL AMBIENTAL E NUTRICIONAL

Alimentação e ambiente

Humanos

Gases de efeito estufa (GHG)

Polyak et al. (2023)

Uso de Terra

10.85 Omnivore m²/day

4.94
Pesco-vegetarian
m²/day

4.97 Vegetarian m²/day

3.86 Vegan

m²/day

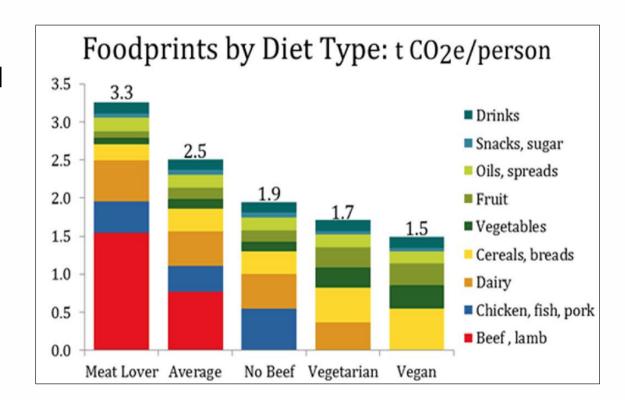
Uso de Água

Vegetarian Diet
Lowest water footprint

Healthy Diet
Reduced animal products

Omnivore Diet

Highest water footprint


Hábitos alimentares

Humanos

- Reduzir desperdício
- Evitar excesso de proteína animal
- Escolher alimentos densos

Hierarquia da recuperação de alimentos

Redução na Fonte

Reduzir o volume de alimentos excedentes gerados

Alimentar Pessoas Famintas

Doar para banco de alimentos e instituições beneficientes

Alimentar Animais

Desviar restos para ração animal

Uso industrial

Produzir combustível e energia renovável (biodigestão)

Compostagem

Produzir nutriente ativo para correção do solo

Aterro Sanitário

Incineração

Ultimo Recurso para disposição

105 ATER

(Carvalho et al., 2020)

Pet food apresenta um papel fundamental na pirâmide da recuperação de alimentos

Principais ingredientes

• 48 alimentos comerciais (15 grandes empresas)

Lipídeos

Gordura de aves

Sebo bovino

Óleo de peixe

Óleo de linhaça

Subprodutos vegetais

Farelo de Arroz

Farelo de trigo

Farelo de gluten de milho 21

DDG/DDG's

Germen de milho

Amiláceos

Milho grão

Quirera de arroz

Batata Doce

Sorgo grão

Cevada

Farinha de mandioca

Farinha de trigo

Grão de aveia

Trigo grão

Protéicos

Farinha de Vísceras

Ovo em pó

Glúten de milho 60

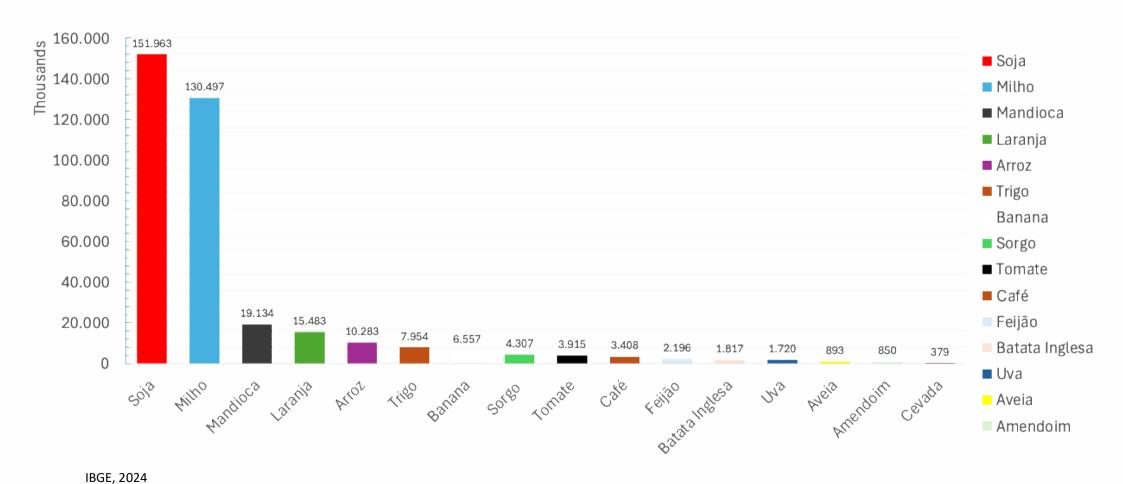
CMS de frango

Proteína Isolada de soja

Farinha de torresmo

Farinha de Peixe

Farelo de soja


Concentrado protéico de soja

Glúten de trigo

Produção vegetal no Brasil

Principais ingredientes vegetais

Farelo de arroz

Quirera de arroz

Concentrado protéico

Milho grão

Gluten de milho 60

Gluten de milho 21

DDGS

Farelo de soja

Concentrado protéico

Proteína isolada

Farinha micronizada

Okara

Trigo grão

Glúten de trigo

Farelo de trigo

Outros

Cevada

Sorgo

Aveia

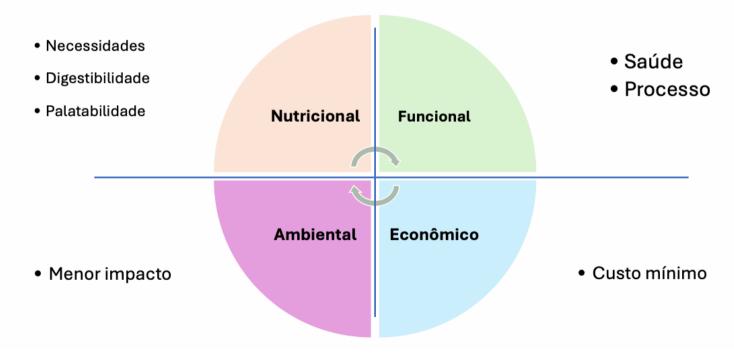
Batata doce

Batata Inglesa

Lentilha

Ervilha

Mandioca


Feijão

Escolha dos ingredientes

Abordagem multiobjetivo é semelhante à tradicional formulação or custo mínimo, mas encontrando um algoritmo com soluções intermediárias aos fatores ambientais e de custo (Garcia-Launay, et al., 2018)

Aspectos nutricionais e ambientais

Nutrição

- Necessidades nutricionais
- Palatabilidade

Digestibilidade

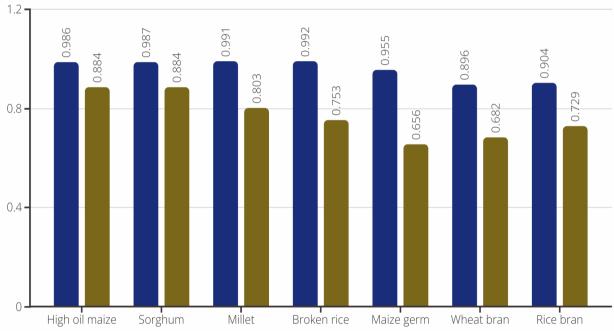
- Valor biológico (proteína)
 - **Ambiente**

- Potencial de Mudanças climáticas
- Uso de água
- Uso da terra
- Outros impactos
 - Eutrofização
 - Acidificação
 - Ecotoxicidade
 - Material Particulado

Funções dos vegetais

A análise comparativa do desempenho nutricional e ambiental pode ocorrer, desde que respeitada a **FUNCIONALIDADE** do ingrediente, respeitando a mesma função.

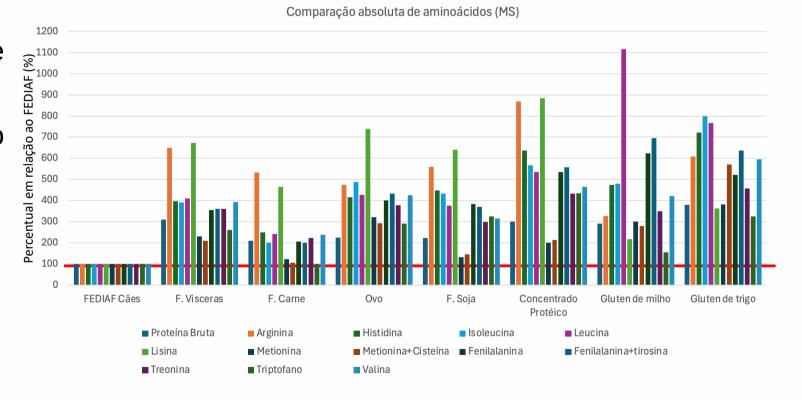
- Fonte de amido
- Fonte de fibra
- Fonte de proteína
- Propriedades funcionais



Qualidade nutricional - amido

- Alta disponibilidade quando extrusado (>99%)
- Boa aceitação
- Limitado impacto glicêmico
- Importante no processamento

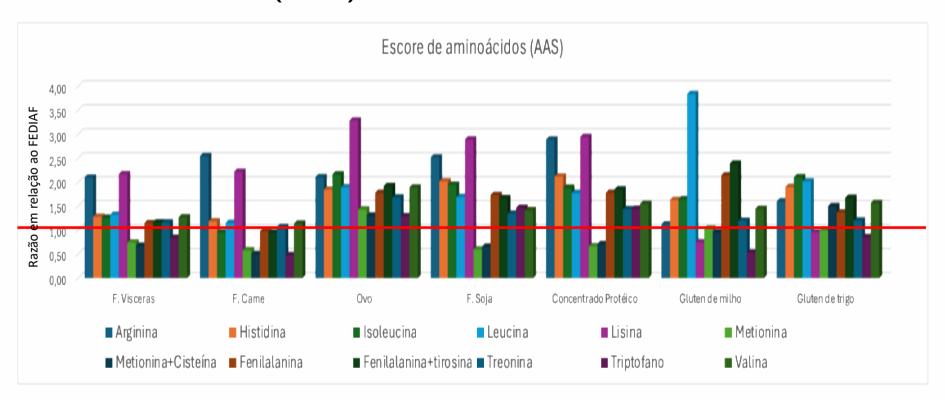
Digestibilidade do amido e PB de diferentes fontes


Qualidade nutricional - Proteínas

• Concentração de aminoácidos

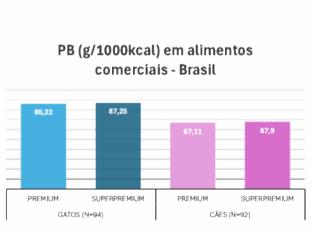
Digestibilidade

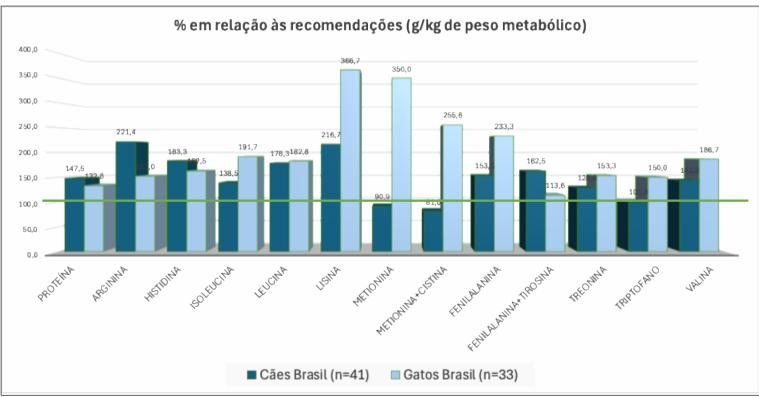
Valor biológico



Qualidade nutricional - Proteínas

• Escore de aminoácidos (EAA)

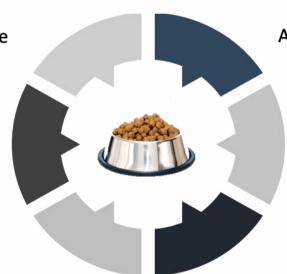




Nutrição x Ambiente

Atender as necessidades nutricionais e evitar os excessos e excreções ambientais desnecessárias, significa otimizar a saúde e a sustentabilidade Ambiental.

Digestibilidade de fontes protéicas

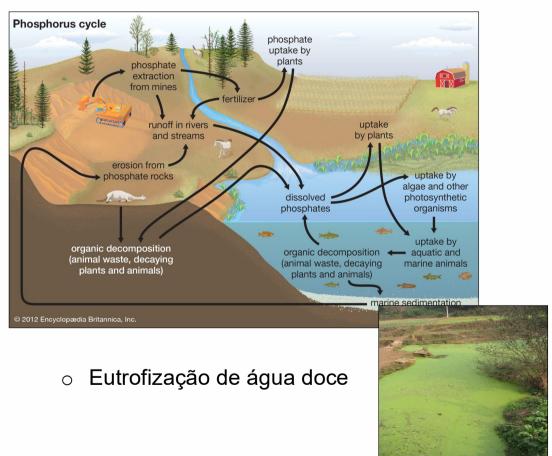

"Gaps" na sustentabilidade em Pet food

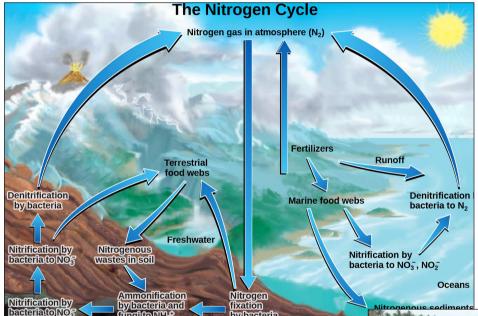
Principais problemas

Competition for the food grade ingredients

Overconsumption of food And Overweight/Obesity

Animal origin Ingredients


High levels of protein and Phosphorus in the diets

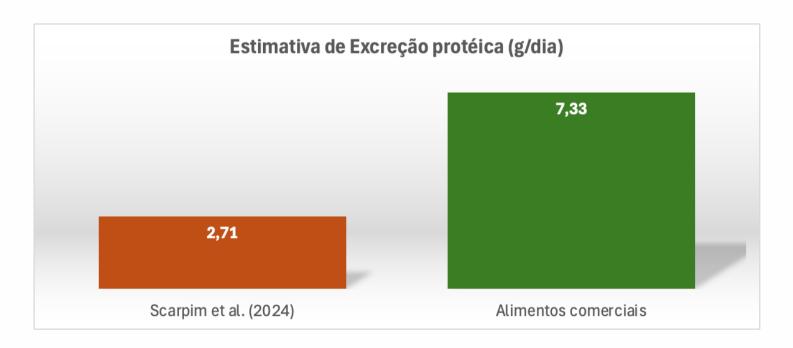

(Pimentel e Pimentel, 1996; Swanson et al. 2013; Carrión e Thompson, 2014; Okin et al., 2017; Martens et al., 2019; Yavor et al., 2020; Alexander et al., 2021).

Por que Nitrogênio e Fósforo??

- Eutrofização Marinha
- Eutrofização Terrestre

Necessidades mínimas x recomendações 👸

Slide retirado, que mostrava dados de que é possível reduzir a PB em alimentos e attender adequadamente a necessidade aminoacídica dos animais

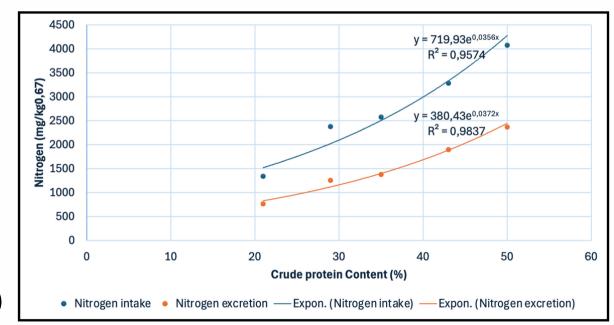


Estimativas da excreção de nitrogênio

 \circ Cão = 15 kg; NEM = 95 kcal/kg^{0,75}; CDPB = 85%

Estimativas de excreção fecal de PB

Conteúdo de proteína em Pet food



Crude Protein (%)						
	21	29	35	43	50	
Nitrogen excretion (% increase)	100,00	178,23	192,74	245,55	305,09	
Nitrogen excretion	100,00	163,07	179,97	247,07	308,32	

• Sem diferença > 29% de PB

Sato et al. (2020)

Conteúdo protéico em Pet food

Proteína acima de16% não é necessária para manter o BN em cães adultos jovens e idosos, apesar do fluxo linear de N.

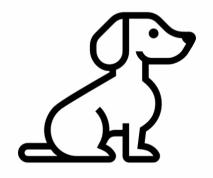


Table 2. Nitrogen balance in young-adult and geriatric dogs fed experimental diets containing 16, 24, or 32% protein^a

		Dietary	y protein	Age^b			
Item	16%	24%	32%	SEM	YA	G	SEM
N intake, g/d ^c	3.6	5.3	7.5	0.2	5.5	5.4	0.1
Fecal N, g/d ^d	0.8	1.0	1.3	0.1	1.0	1.1	0.1
Urinary N, g/dc	3.2	4.8	6.5	0.2	4.9	4.8	0.1
N balance, g/d	-0.4	-0.6	-0.3	0.1	-0.4	-0.4	0.1
N absorbed, g/def	2.8	4.2	6.3	0.1	4.5	4.3	0.1
N digestibility, %eg	77.5	80.2	83.1	1.1	81.6	78.9	0.9

^aValues are least squares means for six dogs per treatment.

Table 3. Estimates of whole-body protein turnover in young-adult and geriatric dogs fed experimental diets containing 16, 24, or 32% protein^a

	Dietary protein						
	16%		24%		32%		
Item	YAb	Gc	YA	G	YA	G	SEM
N Flux, g/d ^{de}	10.9	7.4	9.2	16.7	23.9	28.2	2.7
Whole-body							
Degradation, g/de	45.5	23.8	23.7	72.2	102.6	129.2	16.6
Synthesis, g/de	43.7	21.0	20.4	68.5	100.6	128.0	16.8
Difference, g/d	1.8	2.8	3.3	3.7	2.0	1.2	1.2
Whole-body							
Degradation, g·kg ⁻¹ ·d ⁻¹ f	4.8	2.7	2.5	7.0	10.3	12.8	1.6
Synthesis, g·kg ⁻¹ ·d ⁻¹ f	4.6	2.4	2.1	6.6	10.1	12.7	1.7
Difference, g·kg ⁻¹ ·d ⁻¹	0.2	0.3	0.3	0.4	0.3	0.1	0.1

Williams et al. (2001)

bYA = young-adult (2 yr of age); G = geriatric (8 yr of age).

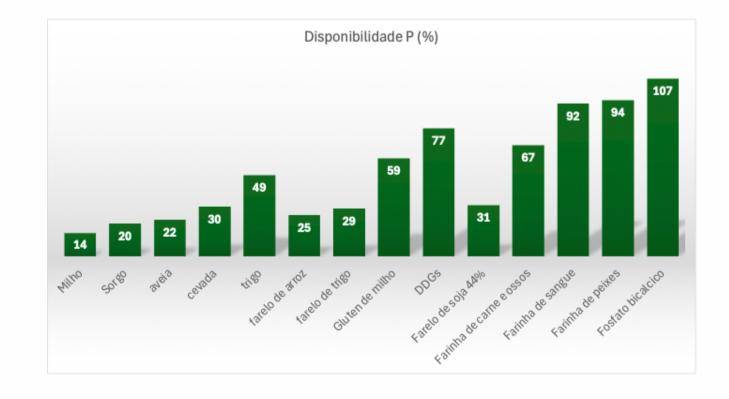
cLinear effect due to dietary protein (P < 0.01). dLinear effect due to dietary protein (P < 0.05).

^eLinear effect due to dietary protein (P < 0.10).

fMain effect due to age (P < 0.10).
gMain effect due to age (P < 0.05).

Estimativas da excreção de fósforo

o Gagné et al. (2013) – 45 alimentos secos comercializados nos EUA


Calcio – 18 g/kg

Fósforo – 13 g/kg

Pig News and Information 1992 Vol. 13 No. 2 pp. 75N-78N

The Biological Availability of Phosphorus in Feedstuffs for Pigs

Gary L. Cromwell
Department of Animal Sciences, University of Kentucky,
Lexington, Kentucky 40546, USA

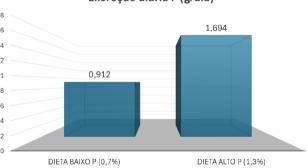
Estimativas da excreção de fósforo

Nutrientes

Simulação – digestibilidade média 28%

Ingredientes

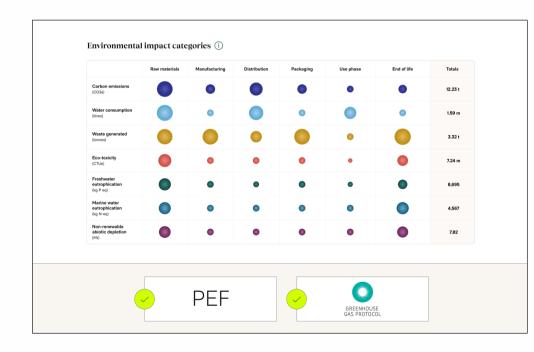
Código	Nome do Ingrediente	Formula teste CBNA 2025
	Outros	
000109	Milho Grão	27,6717
000501	Soja Farelo 45%	15,0000
000301	Arroz quirera	10,0000
000065	Polpa de Beterraba	3,0394
001202	Palatabilizante líquido	2,0000
000704	Óleo de Linhaça	0,6828
000812	Sal Comum	0,0168
	Macro-ingrediente	
000604	Vísceras Farinha Aves	16,8484
000202	Trigo Farelo	10,0000
000602	Carne e Osso Farinha	6,8656
000701	Gordura de Aves	6,2331
000901	DL - Metionina	0,4000
000809	Fosfato Bicálcico	0,3522
001101	Cloreto de Colina	0,2520
001501	Antifúngico Pet 10	0,1000
	Micro-ingrediente	
001003	Premix PPZ cães	0,5000
001403	Antioxidante BHA/BHT	0,0379


Tamanho da Batida (kg)

100,0000

Código	Nome do Nutriente	Unidade de Medida	Formula teste CBNA 2025
0002	Proteína bruta	%	27,0000
0003	Extrato etéreo	%	12,0000
0004	Fibra bruta	%	3,0000
0005	Cinzas	%	6,7828
8000	Matéria seca	%	88,5384
0010	Histidina	%	0,5550
0011	Isoleucina	%	0,9846
0012	Leucina	%	1,9494
0013	Lisina total	%	1,2900
0014	Metionina Total	%	0,8162
0015	Metionina + Cistina Total	%	1,1943
0016	Fenilalanina	%	1,1001
0017	Fenilalanina + Tirosina	%	1,8611
0018	Treonina Total	%	0,9618
0019	Triptofano total	%	0,2641
0020	Valina Total	%	1,2225
0021	Ácido linoleico W6	%	2,6882
0022	Ácido araquidônico	%	0,0358
0023	Ácido alfa linolênico	%	0,5000
0025	Cálcio	%	1,8000
0026	Fósforo	%	1,1000

Excreção diária P (g/dia)



Estudos sobre impacto ambiental

- o Complexidade da determinação de indicadores ambientais para ingredientes
 - ✓ Sistemas de produção
 - ✓ Tipo de transporte e distância
 - ✓ Região geográfica
 - ✓ Método de coleta de dados (primários vs. secundários)
 - ✓ Indicadores ambientais utilizados

Avaliação do ciclo de vida

Product Environmental Footprint

Environmental multi indicators

Based on LCA

European Comission

Product Environmental Footprint Category Rules (PEFCRs)

Prepared Pet Food for Cats and Dogs

FINAL version (post positive opinion of the EF Steering Committee on 18 April 2018)

9 May 2018

Valid through 31 December 2020

Prepared by the Technical Secretariat.

The European Pet Food Industry Federation (FEDIAF), C&D Foods, the French Pet Food Association for Dogs, Cats, Birds and Other Domestic Pets (FACCO, Chambre Syndicale des Fabricants d'Aliments pour Chiens, Chats, Oiseaux et

autres Animaux Familiers), Mars PetCare Europe, Nestlé Purina PetCare

Europe, saturn petcare gmbh, and Quantis

PEFCR 2025

Table 42 Most relevant life cycle stage comparing screening and supporting study results

	Cat				Dog			
Туре:	Wet		Dry		Wet		Dry	
Product:	RP	C&D	RP	Purina	RP	Saturn	RP	Mars
Ingredients	✓	✓	*	✓	✓	✓	√	✓
Packaging production	✓	✓			✓	✓		
Manufacturing								
Distribution	*	✓	*	✓	✓	✓	*	✓
Use								
Packaging EOL								

Product Environmental Footprint Category Rules (PEFCRs)

Prepared Pet Food for Cats and Dogs

Updated version (post positive opinion of the EF Steering Committee on December 18th

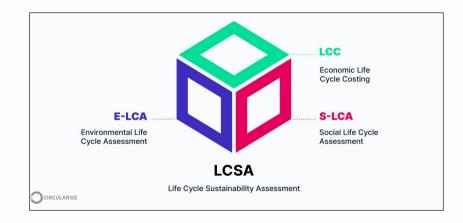
Valid through 31 December 2025

Prepared by the Technical Secretariat:

The European Pet Food Industry Association (FEDIAF), the French Pet Food Association for Dogs, Cats, Birds and Other Domestic Pets (FACCO) Industrial Association of Pet Care Producers' (German: Industrieverband Heimtierbedarf,

IVH), Mars PetCare, Nestlé Purina PetCare, Affinity PetCare, Pet Select, Normandise Petfood, Hills Pet Nutrition and Blonk, a Mérieux NutriSciences

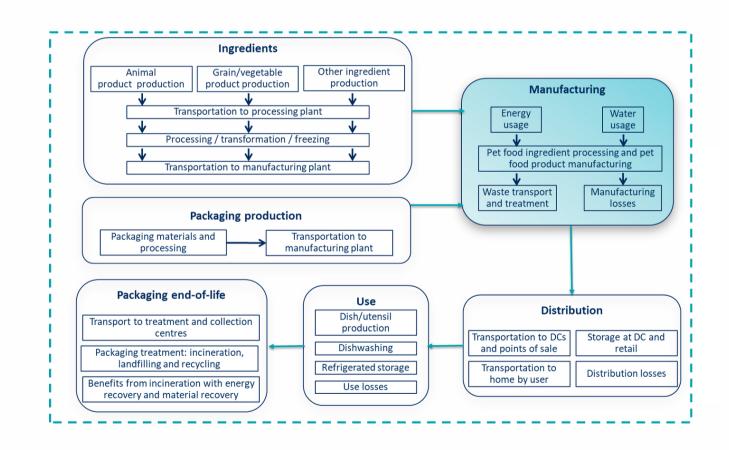
Most relevant life cycle stages (weighted)							
	Ingredients	Packaging	Manufacturing	Distribution	Use	End-of-Life	total
Dry cat food	78%	3%	5%	11%	3%	-1%	100%
Dry dog food	80%	2%	5%	12%	1%	0%	100%
Wet cat food	42%	36%	6%	20%	6%	-10%	100%
Wet dog fod	43%	40%	6%	18%	2%	-10%	100%



Avaliação do ciclo de vida

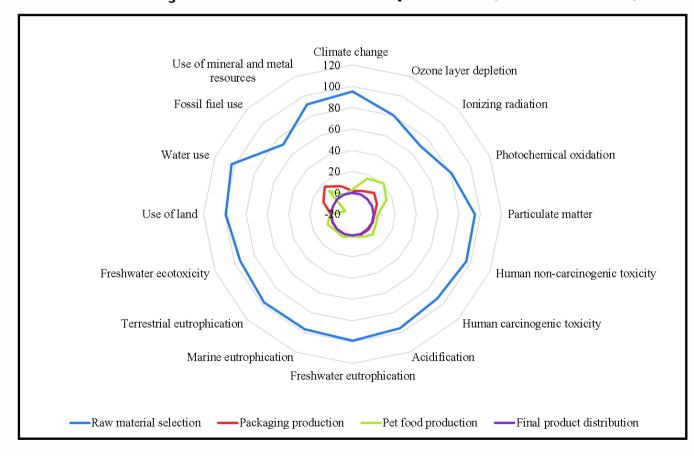
"É uma ferramenta de compilação e avaliação das entradas, saídas e potenciais impactos ambientais de um sistema de produto ao longo de seu ciclo de vida" (ISO, 2006).

- Apenas ambiental (atribucional)
- Aspectos sociais, econômicos e ambientais (conseqüencial)



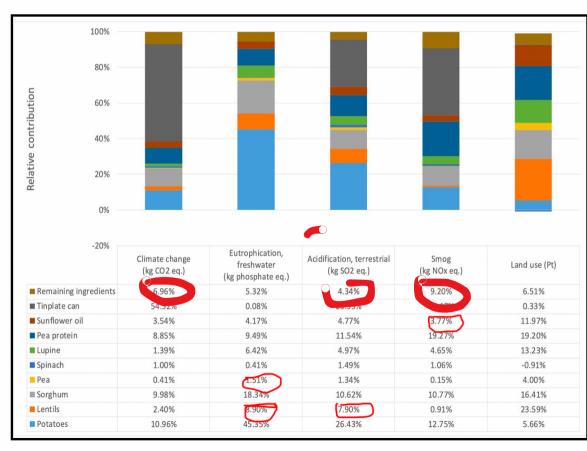
Fases do produto

- Matéria prima
- Processamento
- Embalagem
- Distribuição
- Uso
- EoL embalagem



Contribuição de cada etapa

Principal fase é a seleção da matéria-prima (70 - 90%)



Formulações veganas

Wet vegan diet (Jarosch et al., 2024)

- PEFCR approach
- Cradle-to-grave
- RF to supply 50% of MER
- Package tinplated steel can

Alternative formulations

Meat based (PEFCR) and Vegan (Jarosch et al., 2024)

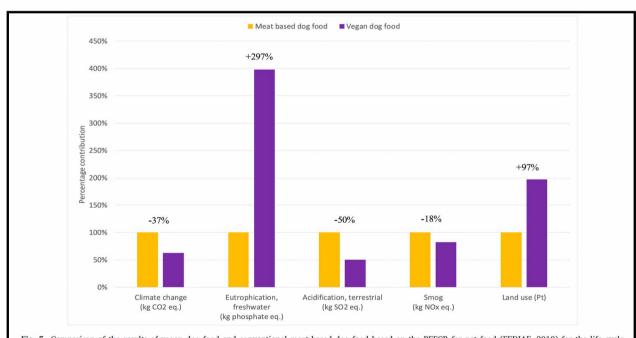
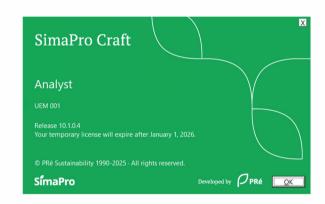


Fig. 5. Comparison of the results of vegan dog food and conventional meat-based dog food based on the PEFCR for pet food (FEDIAF, 2018) for the life cycle excluding the use phase. Meat-based dog food is set to 100% and the comparison of vegan dog food is shown accordingly.



Pegada Ambiental de ingredientes

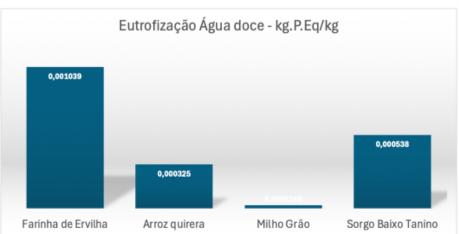
Metodologia

Abordagem/limitações

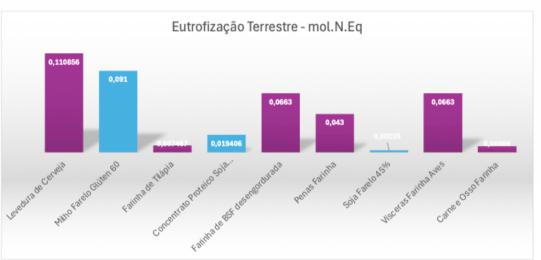
- Berço ao portão (produção)
- Excluído etapa de uso
- Ausência de regionalização

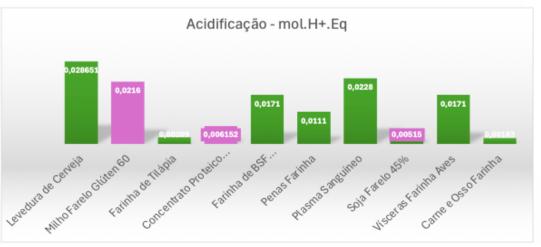
Origem dos dados de MPs:

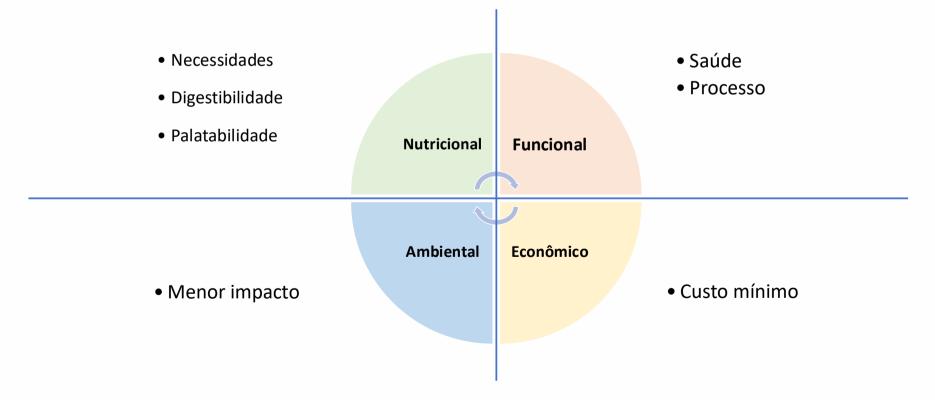
- Primários de fornecedores
- Embrapa (milho, soja e cana)
- Originais do software com adaptações
- Artigos científicos


Pegada Ambiental de ingredientes

Amiláceos



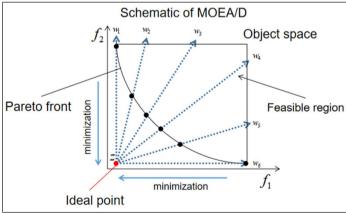

Pegada Ambiental Protéicos



P&D multiobjetivo

Abordagem multiobjetivo é semelhante à tradicional formulação or custo mínimo, mas encontrando um algoritmo com soluções intermediárias aos fatores ambientais e de custo (Garcia-Launay, et al., 2018)

Pesquisa & Desenvolvimento



Abordagem Multiobjetivo

Solução com 3 parâmetros: digestibilidade, custo e impacto ambiental

Relevância da Fase de uso

PEFCRs assumptions

Assumptions

Dish lifetime
Dish material
Dish washing
Electricity
Water usage
Soap usage
Packaging destination

Limitations

- Fecal production
- Urine production
- Excretion destination

Impact category	Units	Total Life Cycle	Use stage (%
Climate change	kg CO2 eq	0,39	2,15
Particulate matter	disease incidence	0,00	1,43
Acidification	mol H+ eq	0,00	1,40
Eutrophication, terrestrial	mol N eq	0,02	1,19
Eutrophication, freshwater	kg P eq	0,00	3,78
Eutrophication, marine	kg N eq	0,00	1,26
Water use	m3 world eq	1,38	1,30

Relevância da Fase de uso

• Alimento úmido para cães

Category		Impact over 13 years	Impact over 1 years
Climate change	kg CO2 eq	8200	630,7692308
Particulate material	CTUh	0,0025	0,000192308
Acidification	molc H+ eq	64	4,923076923
Terrestrial eutrophication	molc N eq	220	16,92307692
Marine eutrophication	kg N eq	21	1,615384615
Freshwater eutrophication	kg P eq	5	0,384615385

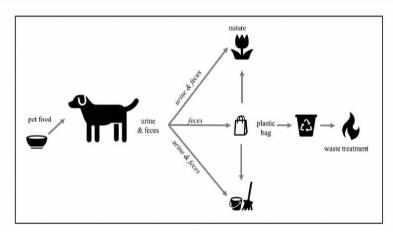
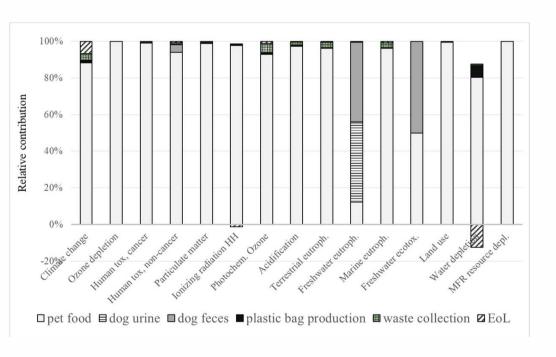
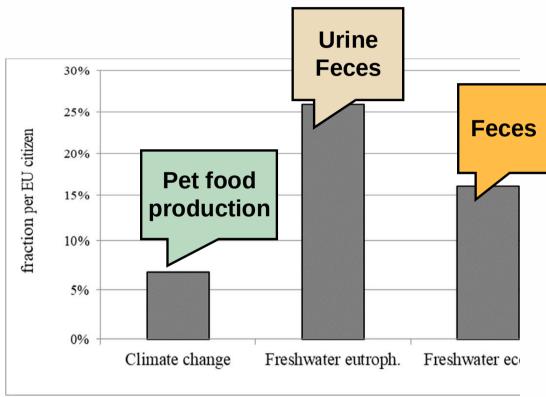


Figure 1. Illustration of the product system of a dog.

Table 1. Inputs and outputs considered in the product system of a dog.

Input (pet food)	Pet food itself	•	production of the pet food, including food packaging and transportation
	Dishes for pet food	•	washing


production, including transportation of the bag



Fase de uso

Subestimado pelo PEFCR

Conclusão

- Necessidade de melhorar as informações sobre qualidade protéica e fósforo disponível;
- Elevada incerteza em dados sobre desempenho Ambiental;
- Abordagem multiobjetivo mais técnica em P&D;
- Ingredientes animais também são viáveis em função dos indicadores de impacto ambiental

Muito Obrigado

Ricardo Souza Vasconcellos

44 9 9700-3434

